ELEMENTARY THEORY OF THE BOILING LAYER

M. A. Gol'dshtik UDC 536.46

This study is an attempt at a qualitative examination of the phenomena of a boiling layer, based
on certain probable hypotheses and estimates. It is not suggested that the results obtained be consid-
ered final, Many studies have been dedicated to the problems of the boiling layer. An incomplete bib-
liography is contained in [1], But at present there is no physical theory of the boiling layer which
would describe the fundamental principles of the phenomena observed, even though many studies have
been directed in this direction, for example [2]. The main difficulty encountered is that the boiling layer
is a dissipative system, with the mechanism which generates chaotic particle motion unknown, There
are no conservation integrals such as the energy integral, and thus a formulation anslogous to the ki-
netic theory of gases is inapplicable,

1. Basic Facts. We will imagine a vertical cylindrical tube, in the interior of which is a layer of
identical globules, resting on a grid. Through the tube from bottom to top there passes a flow of an incom-
pressible fluid, for example, air or water. This flow produces a lifting force acting upon the layer of
particles opposite to the force of gravity. When the lifting force becomes equal to the gravitational force
the layer becomes, so to speak, "weightless," With a further increase in flow velocity a situation is
possible in which the layer, not changing its structure, may begin to move upward, like a piston. However,
in practice this does not occur; the layer expands, the particle concentration therein decreases, the inter-
particle distance increases, and so does the flow velocity in the layer, and thus the lifting force decreases.
Within the layer theredevelopsaparticle configuration such that the lifting force again equals the gravita-
tional force.

Observations have shown that in a boiling layer various regimes are possible, depending on the flow
rate and properties of the medium and particles. The most basic of these modes is the so~called homo-
geneous boiling layer. In this case the flow inthe layer is distributed almost uniformiy over the cross-
section, almost the entire particle mass is concentrated in a column of definite height, possessing a well
defined surface, above which exists "vapor," where the particle concentration is significantly lower than in
the layer. Not infrequently one can observe oscillations and waves on the layer surface similar to those
on the surface of water, whence the boiling layer is also called the quasi-liguid layer, The particle concen-
tration in a sufficiently thick column has practically no variation with height; in the vapor phase the con-
centration decreases rapidly with height. Thus the problem of a satisfactory theory is complicated by the
fact that it must describe a phase transition, and the differential equation describing particle concentration
as a function of height must allow discontinuous solutions.

2. Geometry of the Layer. In order to derive the equations describing the processes in the layer it
is necessary to determine the mean distance between particles | and the minimum traversable section of
the layer ¢ for a given concentration of particles 7 or porosity &=1—7, which is the amount of empty
space per unit volume of the layer,

It is known [1] that the mean relative traversable area is £. The minimum relative traversable area
¥, speaking generally, depends on the distribution of particles in the layer. We will examine two limiting
cases: a cubic particle lattice, the rarest particle distribution in the layer; and a tetrahedral lattice, one
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", of the most dense sphere packings possible. We will assume that the real
4 particle distribution is somewhere between these two limiting possibilities.

Simple geometric considerations permit the establishment of the

27
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o, 77 76 where d is the particle diameter and [ is the interparticle distance.
Fig. 1 The values T and ¥, characterize a real layer in a dense state with
the same relative particle distribution. We will assume that the value of
2% /}'\ Ty corresponds to a globule concentration in a free packing of random
7 | character. According to experimental data, 7,=0.6.
I
; Direct experimental determination of 3, is difficult, and so we shall
I use the following interpolations, assuming that the real values of 7, and
l ¥y may be found from the linear formulas
[ .
8 Ty Iy — T =20+ {1 — )1, Y=, + (1 — 1), (2.3)
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{ { { ‘ Here x is the degree of closeness of the actual packing to cubic, the sub-
: I { script 1 corresponds to cubical packing; and the subscript 2 fo tetrahedral,
I . .
{ l, : =T at t=1 T=1 at z=0
- |
! ‘ ! Eliminating x from these expressions and using the numerical values
I [ !
1% 1% [ T,=0.524, ¥,=0.215, 1,=0.74, ,=0.096, we obtain y,=0.17. Consequent-
Ly ,f;” iy, EQ. (2.2) can be written in the form
Fig. 2 p=1—-1177v"% (2.4)

The curve of Eq. (2.4) is presented in Fig. 1. Also shown by a dashed line is the curve of the formula
obtained by 8. L. Leibenzon [1]

P =0.625 (1 —t)**
which is obviously of an empirical nature and not applicable for small 7.

3. The Equation of Average Motion and Its Analysis. If the layer of particles is regarded as a gas,
then for the mean motion it is possible to write all the dynamic equations of a continuous medium. However,
we will limit ourselves to the one-dimensional case and moreover assume that the layer is, on the average,
at rest. Then the momentum equation reduces to the equation

dg/dy =1(F, —org) 3.1)

Here the y axis is directed vertically upward, g is the pressure of the particle gas, i.e., the momentum
transferred through a unit area in unit time by the particles, py is the density of the solid phase material,
g is the acceleration of gravity, and F, is the resistance force of a unit volume of the layer.

For the resistance force acting on a single particle, we take the expression

fo=E ﬂ__'ﬂ%c_o)z (3.2)

where p is the density of the medium, v, is its velocity relative to an empty section,v,/¢ is the velocity
at the minimum traversable section, and £ is the particle resistance coefficient.

The value of ¢ depends on the Reynolds term Re =v,d/¢ v, where v is the coefficient of kinematic
viscosity, but, as the data of [1} shows, is independent of porosity and particle configuration in the layer.
Moreover, Eq. (3.2) proves to be applicable to tubular beams with the same value of £. Therefore it may
be assumed that the function £ (Re) is universal. With a growth in Re it decreases, but for Re > 1000 £
stabilizes near a value of 0.5.

Since 7 is the fraction of solid phase per unit volume, the number of particles per unit volume will
be given by
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n = 61/ad® (3.3)
Multiplying Eq. (3.3) by Eq. (3.2) and substitufing in Eq. (3.1) we obtain the final expression

B (g Ep i org) =R (3.4)
In this equation there are two unknowns, v and q. In order to complete the system it is necessary to

know the function q(7). To do this, in the following development we will return to the mechanics of the

. chaotic motion of particles in the layer. However, the general character of the function q(7) can be estab-

lished from Eq. (3.4) alone. Let vy =0 initially, then 7 =7, ¥ =¢, and q(y} is a decreasing linear function,

while q(h) =0, h being the height of the immobile layer. With an increase in v, the character of the function

q(y) does not change until the equality

oW

£ vw\? _
Td p(;ﬁ) = P78

is reached.

At that time q(y) =0. With further increase in v, the layer begins to boil and the function q(y) becomes
positive due to the chaotic particle motion which has begun. Let the value of v, be fixed and such that the
boiling layer corresponding thereto will be sufficiently thick. We assume that the function q(r) in the region
of large 7 is monotonic on some interval 7. Two cases are poasible:

dg dg »
a) —= >0, )7 <0
We will now write Eq. (3.4) in the form

dv dg \-1
v (7;> R (1) (3.5)
Considering Eq. (2.4), it is easy to prove that R(7) is a monoctonic increasing function of 7. We will
denote by 7, that value of 7 such that R(7,) =0, assuming that 7, lies in the chosen interval of large 7.
Let the initial value 7(0), belonging to the same interval, be given for Eq. (3.5). Three cases are possible;

TO>T TO) =T, TO)<T,

Let case a) be realized, then for 7 (0) > T4 R (1) >0 and according to Eq. (3.5) d7/dy > 0. Thus the layer
will condense itself in height. For the case 7(0) < 7, the layer will rarify. Thus case a) is unstable. In
case b) any change in 7 (0) from 7, will tend to a reduction, i.e., the concentration in this case will tend
to become constant over the height of the layer. Tt is just this type of behavior that is characteristic of a
real layer, and thus it can be concluded that in the region of large T the function q(r) is decreasing. On
the other hand, at low concentration levels the bebavior of the particle gas should be the same as that of a
usual molecular gas, for which under normal conditions pressure increases with an increase in density.
Thus over its entire range the function (7) must be nonmonotonie, having a maximum.

4. Equation of State of a Dense Layer. We will examine a unit area located, for example, on the wall,
Let the mass of particle be m=1/6 1rd3pT and its chaotic velocity at the moment of impact on the area be c.
In elementary kinetic theory it is assumed that in a unit time the area is reached by all particles located in
a parallelepiped with height c. It is further assumed that the particles are points and screening effects are
not considered.

Such assumptions are impermissible for a dense layer. In fact, with the aid of Eq. (2.1) we will esti-
mate the concentration value at which the interparticle distance is less than the diameter., This estimate
gives 71 > 0.075 (g < 0.925). Thus the inequality I/d < 1 is valid even for quite rarefied layers, so that in a
dense layer complete screening occurs, i.e., in the process of collision with the wail only one layer of
particles participates, that one directly adjoining the area. The mean number of particles in this layer is
47 /md*. The momentum transferred to the wall by a single particle is 2me. Over a time t between colli-
sions the particle traverses a distance 27, consequently the time t =2l/c. Thus one particle in unit time
transfers to the wall a momentum of mcz/l, and all particles located next to the area exert a pressure
thereon of

g = 2/z07c*t/f (%) “.1)
where f(7) is given by Eq. (2.1).
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Equation (4.1) is the sought for equation of state. In it occurs the un-
T ' known chaotic particle velocity e, whose determination is the main difficul-
ty of the entire theory. The basic complication lies in explaining the mech-~

anism whereby energy is transferred from the initial flow to the chaotic
particle motion, i.e., in setting up the energy balance equation.

!

|

|

|

: 5. An Evaluation of the Forces Acting on a Particle in Chaotic

| Motion and the Function q(7). The hydraulic resistance force acting on'a
i % particle due to its chaotic motion is of the order of

g

L 7 fo = /skndPuc
Fig. 3 where u is the relative velocity between particle and gas. & may be

assumed that the hydrodynamic interaction forces between particles are
of the same order.

Inasmuch as the particles inevitably collide with each other and the walls, they must have a rotation
acquired in the collision process. In flowing around the rotating particles there develops a transverse
Magnus force, whose value is given by the expression [3]

I = YsprdPuw

where w is the angular velocity of the particle. To determine w we use the principle of equal distribution
of energy over degrees of freedom, Which occurs under conditions of static equilibrium and for rough
spherical molecules, derived in [4]. In this case the principle leads to an equality of translational and
rotational energy for the particle, inasmuch asithere are six degrees of freedom.

Thus
Y, me? = Y, T w?
where 1= 0.1 md?® is the moment of inertia of the sphere.

From this we find

wd =V 10¢ (5.1)
In consideration of Eq. (5.1) the expression for the Magnus force takes on the form
far =5 V 10pnd?uc (5.2)

Comparing this expression with f,, we find

v _ 8V _469 at r=1,

fe 3
Thus we see that the Magnus force exceeds the resistance force by more than one order. Also it
acts essentially perpendicularly to the flow and therefore gives the fundamental contribution to the chaotic
particle motion.
The above makes it possible to consider the following model of chaotic particle motion in the layer.
The initial chaoticization is produced by the hydrodynamic instability of the rest configuration. However,

this instability only plays the role of a trigger. As soon as the particles begin to collide with each other
the Magnus force acts, fulfilling the function of transferring energy from the flow to the layer.

If we assume ¢ «<u, as is actually the case, the relative velocity and the mean flow velocity in the
layer are comparable

u = vyle
Then the expression for the Magnus force, Eq. (5.2), takes on the form

_1{312 pnd2 Yo c

fM == e

The work performed by this force on a free path length, which for a dense layer may be equated with
the value [, is

Ay — VI o 20 (.3)

854



With the dominant role of the Magnus force this energy can not be dissipated due to the hydraulic re~
sistance forces. Therefore it remains to he assumed that it is lost in inelastic collisions of particles. If
the precollision velocity had a value of c, the postcollision velocity becomes ke, where the value of k for a
head-on collision coincides with the Newton regeneration coefficient, while in other cases it must be cal-
culated with consideration of the scattering angle, which will not be examined here. Equating the energy
loss from inelastic collisions 1/2 mc? (1—Kk%) to Eq. (5.3) we obtain

LYTO p v
= i (5.4)

Substituting Eq. (5.4) in Eq. (4.1) we obtain the final expression q( 1)

. [ p—
107 Tt — 1
1=—T"@p ;p; ouF (1),  F(1) =7 T (5.5)

The function F(7) is shown in Fig. 2. The function g(7) differs from F (1) only by a scale factor.

This function g (1) fulfilis all the requirements established in Sec. 3. However, in the range of very
small 7 the function must be corrected since the relationships obtained are not suitable for strongly rare-
fied layers.

6. Analysis of Results Obtained. As is evident from Fig. 2, the maximum value of q(r) is attained at
T =T7,=0.35 (¢ =0.65). In the figure 7, corresponds to vapor. Inasmuch as it is necessary for stability of a
dense layer that the inequality dq/dr < 0 be fulfilled, such a layer can exist only if T, > 0.35. This indicates
that the inequality must be satisfied so that

0,<0.686 V prplgd at E=0.5

If we introduce the rotational velocity

the requirement for the existence of a dense layer may be written in the form

0.47 < vofvy << 0.42
The left-hand side of this inequality corresponds to dense packing at 74=0.6 and y;=0.17.

In order to solve Eq. (3.5) with consideration of Eq. (5.5) an initial condition must be given, for
example, in the form 7 (0) as well as a condition at infinity 7(»)=0. Moreover, the total particle mass in
the layer must be given

M = pTTTdy
]

However, instead of M it is more convenient to set the height of the dense column h and uniquely
determine M over the height.

If 7(0) >0.35, the solution of Eq. (3.5) for increasing y will tend to the value T, and practically
attains this value for a sufficiently thick layer. At y=hthe concentration drops discontinuouslyanda phase
transition will be accomplished on theleft-handbranch of the curve q(7), where dq /dr > 0. The pressure g
at the phase boundary does not suffer a discontinuity. Thereafter, in accordance with Eq. (3.5), the concen~
tration will decrease quickly to zero with increasing y. The course of the process is depicted schematically
by the arrows in Fig. 2.

The initial condition determines the properties of the laitice supported. For real lattices with a sharp
draft it is evident that 7(0) < T,- The same effect should be produced by lattice vibration. In the ideal case
of an "adiabatic" lattice, dq/dy=0 at y=0 and 7 (0) =7,. In this case the concentration is constant over the
entire height of dense column. An example of the function 7 (y) for this case is shown in Fig. 3. The
particle mass in the layer is found from the formula

]

M =pr (T*h +S "rdy)
h
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The greater the equilibrium concentration 7, the lower the vapor density above the layer. The concentration
T, =0.35 plays a critical role. For 7, <0.35 independent of the initial conditions the entire layer will be in
the vapor phase with concentration decreasing with height. However, the same situation arises for 7 >
0.35, if T (0) <0.35.

Thus, the proposed theory reflects the processes in a boiling layer, including the liquid—vapor phase
transition, in a qualitatively true fashion. Quantitative definitions and comparison with experiment have not
been conducted since the basic relationships were obtained only in coarse approximations. They require
refinement by statistical methods. This is especially true of the parameter k, which has not been deter~
mined in this study.
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